More about the p-adic images of Galois for elliptic curves over \mathbb{Q}

Davide Lombardo Università di Pisa

joint with Matthew Bisatt & Lorenzo Furio

> Schney, 31 July 2025

Galois representations of elliptic curves

Let E/\mathbb{Q} be an elliptic curve. For every prime p and $n \geq 1$ we have the mod- p^n Galois representation

$$ho_{E,p^n}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) o \mathsf{Aut}\, E[p^n] \cong \mathsf{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$$

Galois representations of elliptic curves

Let E/\mathbb{Q} be an elliptic curve. For every prime p and $n\geq 1$ we have the $\mathrm{mod}\text{-}p^n$ Galois representation

$$ho_{E,p^n}: \mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) o \mathsf{Aut}\, E[p^n] \cong \mathsf{GL}_2(\mathbb{Z}/p^n\mathbb{Z}).$$

These can be combined into a p-adic representation

$$ho_{\mathsf{E},p^\infty}:\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) o\mathsf{Aut}\ T_p\mathsf{E}\cong\mathsf{GL}_2(\mathbb{Z}_p).$$

Mazur's program B (vertical aspect)

Mazur's program B for p-adic representations

Fix a prime p. Classify the possible images of ρ_{E,p^∞} .

Mazur's program B (vertical aspect)

Mazur's program B for *p*-adic representations

Fix a prime p. Classify the possible images of $\rho_{E,p^{\infty}}$.

Reformulation

Let $n \ge 1$ and $H < \operatorname{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$ be a subgroup with $\det H = (\mathbb{Z}/p^n\mathbb{Z})^{\times}$. Determine all (non-CM, non-cuspidal) rational points on $X_H(\mathbb{Q})$.

Lemma (Serre)

Let $p \geq 5$. If $\rho_{E,p}$ is surjective, then so is $\rho_{E,p^{\infty}}$.

Lemma (Serre)

Let $p \geq 5$. If $\rho_{E,p}$ is surjective, then so is $\rho_{E,p^{\infty}}$.

Theorem (Serre, Mazur, Bilu-Parent-Rebolledo)

For p > 37, $\rho_{E,p}$ is either surjective or has image contained in the normaliser of a non-split Cartan: $\left\{ \begin{pmatrix} a & b\varepsilon \\ \pm b & \pm a \end{pmatrix} \mid a^2 - \varepsilon b^2 \neq 0 \right\}$, where

$$\varepsilon \in \mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times 2}$$
.

Lemma (Serre)

Let $p \geq 5$. If $\rho_{E,p}$ is surjective, then so is $\rho_{E,p^{\infty}}$.

Theorem (Serre, Mazur, Bilu-Parent-Rebolledo)

For p>37, $\rho_{E,p}$ is either surjective or has image contained in the normaliser of a non-split Cartan: $\left\{ \begin{pmatrix} a & b\varepsilon \\ \pm b & \pm a \end{pmatrix} \mid a^2 - \varepsilon b^2 \neq 0 \right\}$, where $\varepsilon \in \mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times 2}$.

Theorem (Le Fourn-Lemos 2021, Furio-L. 2023)

For p > 5 and $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$, then $\operatorname{Im} \rho_{E,p}$ is **equal to** the normaliser of a non-split Cartan $C_{ns}^+(p)$.

Lemma (Serre)

Let $p \geq 5$. If $\rho_{E,p}$ is surjective, then so is $\rho_{E,p^{\infty}}$.

Theorem (Serre, Mazur, Bilu-Parent-Rebolledo)

For p>37, $\rho_{E,p}$ is either surjective or has image contained in the normaliser of a non-split Cartan: $\left\{ \begin{pmatrix} a & b\varepsilon \\ \pm b & \pm a \end{pmatrix} \mid a^2 - \varepsilon b^2 \neq 0 \right\}$, where $\varepsilon \in \mathbb{F}_p^{\times} \setminus \mathbb{F}_p^{\times 2}$.

Theorem (Le Fourn-Lemos 2021, Furio-L. 2023)

For p > 5 and $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$, then $\operatorname{Im} \rho_{E,p}$ is **equal to** the normaliser of a non-split Cartan $C_{ns}^+(p)$.

Primes up to 37: Zywina (2015) gives an almost complete classification apart from the non-split Cartan cases.

The normaliser of a non-split Cartan mod p^n

$$C_{ns}^{+}(p^n) = \left\{ \begin{pmatrix} a & b\varepsilon \\ \pm b & \pm a \end{pmatrix} \mid a^2 - \varepsilon b^2 \in (\mathbb{Z}/p^n\mathbb{Z})^{\times} \right\}$$

and let $X_{ns}^+(p^n)$ be the corresponding modular curve.

The normaliser of a non-split Cartan mod p^n

Set

$$C_{ns}^{+}(p^{n}) = \left\{ \begin{pmatrix} a & b\varepsilon \\ \pm b & \pm a \end{pmatrix} \mid a^{2} - \varepsilon b^{2} \in (\mathbb{Z}/p^{n}\mathbb{Z})^{\times} \right\}$$

and let $X_{ns}^+(p^n)$ be the corresponding modular curve.

The computation of $X_{ns}^+(p^n)(\mathbb{Q})$ seems to be very hard.

Progress on Mazur's program B: small p

Recent (and less recent) exciting progress!

- p = 2: Rouse-Zureick-Brown (2015)
- Sutherland-Zywina (2017): modular curves of prime power levels with infinitely many rational points
- p=13,17: Kenku (1980), Balakrishnan–Dogra–Müller–Tuitman–Vonk (2019 and 2021)
- $p \in \{3, 5, 7, 11\}$: almost complete classification by Rouse–Sutherland–Zureick-Brown (2022)
- p = 3: Balakrishnan-Betts-Hast-Jha-Müller (2025)

State of the art

Table 2. Arithmetically maximal groups of ℓ -power level with $\ell \leq 17$ for which $X_H(\mathbb{Q})$ is unknown; each has rank = genus, rational CM points, no rational cusps and no known exceptional points.

Label	Level	Group	Genus
27.243.12.1	23 BE	HJM (2025) $N_{\rm ns}(3^3)$	12
25.250.14.1	5^{2}	$N_{\rm ns}(5^2)$	14
49.1029.69.1	7^{2}	$N_{\rm ns}(7^2)$	69
49.147.9.1	7^{2}	$\left\langle \begin{bmatrix} 16 & 6 \\ 20 & 45 \end{bmatrix}, \begin{bmatrix} 20 & 17 \\ 40 & 36 \end{bmatrix} \right\rangle$	9
49.196.9.1	7^{2}	$\left\langle \begin{bmatrix} 42 & 3 \\ 16 & 31 \end{bmatrix}, \begin{bmatrix} 16 & 23 \\ 8 & 47 \end{bmatrix} \right\rangle$	9
121.6655.511.1	11^{2}	$N_{\rm ns}(11^2)$	511

From the paper by Rouse-Sutherland-Zureick-Brown

State of the art

Table 2. Arithmetically maximal groups of ℓ -power level with $\ell \leq 17$ for which $X_H(\mathbb{Q})$ is unknown; each has rank = genus, rational CM points, no rational cusps and no known exceptional points.

Label	Level	Group	Genus
27 242 12 1		HJM (2025) $N_{\rm ns}(3^3)$	12
25.250.14.1	5 ²	$N_{\rm ns}(5)$ $N_{\rm ns}(5^2)$	14
49.1029.69.1	$\frac{3}{7^2}$	$N_{\rm ns}(7^2)$	69
49.147.9.1	7^2	$\left\langle \begin{bmatrix} 16 & 6 \\ 20 & 45 \end{bmatrix}, \begin{bmatrix} 20 & 17 \\ 40 & 36 \end{bmatrix} \right\rangle$	9
49.196.9.1	7^{2}	$\left\langle \begin{bmatrix} 42 & 3 \\ 16 & 31 \end{bmatrix}, \begin{bmatrix} 16 & 23 \\ 8 & 47 \end{bmatrix} \right\rangle$	9
121.6655.511.1	11^{2}	$N_{\rm ns}(11^2)$	511

From the paper by Rouse–Sutherland–Zureick-Brown (+15 pages of tables of curves on which they are successful!)

Main question

What can we say about the p-adic image of Galois (especially assuming that $\rho_{E,p}$ has image $C_{ns}^+(p)$)?

7-adic representations

Theorem (Furio-L.)

• The set $X_{ns}^+(49)(\mathbb{Q})$ consists of CM points.

7-adic representations

Theorem (Furio-L.)

- The set $X_{ns}^+(49)(\mathbb{Q})$ consists of CM points.
- 2 Let

$$C: x^4 + 3x^3y - 3x^2yz - 3x^2z^2 + 6xy^3 - 6xy^2z + 3xyz^2 - 2xz^3 + 4y^4 + 2y^3z - 5yz^3 = 0.$$

If $\#C(\mathbb{Q}) = 4$, then both $X_{ns}^{\#}(49)(\mathbb{Q})$ and $X_{sp}^{\#}(49)(\mathbb{Q})$ consist of CM points.

7-adic representations

Theorem (Furio-L.)

- The set $X_{ns}^+(49)(\mathbb{Q})$ consists of CM points.
- 2 Let

$$C: x^4 + 3x^3y - 3x^2yz - 3x^2z^2 + 6xy^3 - 6xy^2z + 3xyz^2 - 2xz^3 + 4y^4 + 2y^3z - 5yz^3 = 0.$$

If $\#C(\mathbb{Q}) = 4$, then both $X_{ns}^{\#}(49)(\mathbb{Q})$ and $X_{sp}^{\#}(49)(\mathbb{Q})$ consist of CM points.

Corollary

Unconditionally, the image of $\rho_{E,7^{\infty}}$ is the inverse image in $GL_2(\mathbb{Z}_7)$ of $\rho_{E,49}(Gal(\overline{\mathbb{Q}}/\mathbb{Q}))$.

p-adic representations for p > 7

Theorem (Bisatt-Furio-L., 2025+)

Let p>7 and suppose that $\operatorname{Im} \rho_{E,p}\subseteq C_{ns}^+(p)$. Then there exists $n\geq 1$ such that $\operatorname{Im} \rho_{E,p^\infty}$ is the inverse image in $\operatorname{GL}_2(\mathbb{Z}_p)$ of $C_{ns}^+(p^n)$.

p-adic representations for p > 7

Theorem (Bisatt-Furio-L., 2025+)

Let p>7 and suppose that $\operatorname{Im} \rho_{E,p}\subseteq C_{ns}^+(p)$. Then there exists $n\geq 1$ such that $\operatorname{Im} \rho_{E,p^\infty}$ is the inverse image in $\operatorname{GL}_2(\mathbb{Z}_p)$ of $C_{ns}^+(p^n)$.

Corollary

The index of the adelic representation attached to E is $\ll h(E)^{2+o(1)}$ as $h(E) \to \infty$.

Classification of p-adic representations: group theory

Let $\pi_k : \mathsf{GL}_2(\mathbb{Z}_p) \to \mathsf{GL}_2(\mathbb{Z}/p^k\mathbb{Z})$ be the canonical projections.

Theorem (Zywina, Furio)

Let $p \ge 7$ and assume $\text{Im } \rho_{E,p} = C_{ns}^+(p)$. One of the following holds:

1 There exists $n \ge 1$ such that $\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right)$;

Let $\pi_k : \mathsf{GL}_2(\mathbb{Z}_p) \to \mathsf{GL}_2(\mathbb{Z}/p^k\mathbb{Z})$ be the canonical projections.

Theorem (Zywina, Furio)

Let $p \ge 7$ and assume $\text{Im } \rho_{E,p} = C_{ns}^+(p)$. One of the following holds:

- There exists $n \ge 1$ such that $\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right)$;
- 2 Im $ho_{E,p^{\infty}}=\pi_2^{-1}\left(\mathit{G}_{\mathit{ns}}^{\#}(p^2)\right)$, where

Let $\pi_k : \operatorname{GL}_2(\mathbb{Z}_p) \to \operatorname{GL}_2(\mathbb{Z}/p^k\mathbb{Z})$ be the canonical projections.

Theorem (Zywina, Furio)

Let $p \ge 7$ and assume $\operatorname{Im} \rho_{E,p} = C_{ns}^+(p)$. One of the following holds:

- **1** There exists $n \ge 1$ such that $\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right)$;
- $\text{ Im } \rho_{E,p^{\infty}} = \pi_2^{-1} \left(G_{\textit{ns}}^{\#}(p^2) \right), \textit{ where }$

$$G_{ns}^{\#}(p^2) = C_{ns}^+(p) \rtimes V, \quad V = \operatorname{Id} + p \begin{pmatrix} a & b\varepsilon \\ -b & c \end{pmatrix}.$$

Sketch of proof.

Let $G := \operatorname{Im} \rho_{E,p^{\infty}}$. The sequence

$$1 o \ker(G(p^2) o G(p)) o G(p^2) o G(p) o 1$$

shows that $G(p)=C_{ns}^+(p)$ acts by conjugation on $\ker(G(p^2) o G(p)),$

Sketch of proof.

Let $G := \operatorname{Im} \rho_{E,p^{\infty}}$. The sequence

$$1 o \ker(G(p^2) o G(p)) o G(p^2) o G(p) o 1$$

shows that $G(p) = C_{ns}^+(p)$ acts by conjugation on $\ker(G(p^2) \to G(p))$, so this kernel is a $C_{ns}^+(p)$ -stable subspace of

$$\mathsf{M}_2(\mathbb{F}_p)\cong V_1\oplus V_2\oplus V_3,$$

Sketch of proof.

Let $G := \operatorname{Im} \rho_{E,p^{\infty}}$. The sequence

$$1 o \ker(G(p^2) o G(p)) o G(p^2) o G(p) o 1$$

shows that $G(p)=C_{ns}^+(p)$ acts by conjugation on $\ker(G(p^2)\to G(p))$, so this kernel is a $C_{ns}^+(p)$ -stable subspace of

$$\mathsf{M}_2(\mathbb{F}_p)\cong V_1\oplus V_2\oplus V_3,$$

$$V_1 = \mathbb{F}_p \cdot \mathsf{Id}, \qquad V_2 = \mathbb{F}_p \cdot \begin{pmatrix} 0 & \varepsilon \\ 1 & 0 \end{pmatrix}, \qquad V_3 = \mathbb{F}_p \cdot \left\langle \begin{pmatrix} 0 & \varepsilon \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle.$$

Sketch of proof.

Let $G := \operatorname{Im} \rho_{E,p^{\infty}}$. The sequence

$$1 \to \ker(G(p^2) \to G(p)) \to G(p^2) \to G(p) \to 1$$

shows that $G(p)=C_{ns}^+(p)$ acts by conjugation on $\ker(G(p^2)\to G(p))$, so this kernel is a $C_{ns}^+(p)$ -stable subspace of

$$\mathsf{M}_2(\mathbb{F}_p)\cong V_1\oplus V_2\oplus V_3,$$

$$V_1 = \mathbb{F}_{\rho} \cdot \mathsf{Id}, \qquad V_2 = \mathbb{F}_{\rho} \cdot \begin{pmatrix} 0 & \varepsilon \\ 1 & 0 \end{pmatrix}, \qquad V_3 = \mathbb{F}_{\rho} \cdot \left\langle \begin{pmatrix} 0 & \varepsilon \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle.$$

Now $V_1 \oplus V_2$ gives $C_{ns}^+(p^2)$, while $V_1 \oplus V_3$ gives $G_{ns}^\#(p^2)$.

Sketch of proof.

Let $G := \operatorname{Im} \rho_{E,p^{\infty}}$. The sequence

$$1 o \ker(G(p^2) o G(p)) o G(p^2) o G(p) o 1$$

shows that $G(p)=C_{ns}^+(p)$ acts by conjugation on $\ker(G(p^2)\to G(p))$, so this kernel is a $C_{ns}^+(p)$ -stable subspace of

$$\mathsf{M}_2(\mathbb{F}_p)\cong V_1\oplus V_2\oplus V_3,$$

$$V_1 = \mathbb{F}_p \cdot \mathsf{Id}, \qquad V_2 = \mathbb{F}_p \cdot \begin{pmatrix} 0 & \varepsilon \\ 1 & 0 \end{pmatrix}, \qquad V_3 = \mathbb{F}_p \cdot \left\langle \begin{pmatrix} 0 & \varepsilon \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle.$$

Now $V_1 \oplus V_2$ gives $C_{ns}^+(p^2)$, while $V_1 \oplus V_3$ gives $G_{ns}^\#(p^2)$. To conclude the classification, one also needs information about the existence of sufficiently many homotheties in $\rho_{E,p^{\infty}}$.

Classification of *p*-adic representations: local analysis

Theorem (Bisatt-Furio-L., 2025+)

Let p>7 and suppose that $\operatorname{Im} \rho_{E,p}\subset C_{ns}^+(p)$. Then there exists $n\geq 1$ such that

$$\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right),$$

where

$$\pi_n: \mathsf{GL}_2(\mathbb{Z}_p) \to \mathsf{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$$

is the canonical projection.

Theorem (Bisatt-Furio-L., 2025+)

Let p>7 and suppose that $\operatorname{Im} \rho_{E,p}\subset C_{ns}^+(p)$. Then there exists $n\geq 1$ such that

$$\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right),$$

where

$$\pi_n: \mathsf{GL}_2(\mathbb{Z}_p) \to \mathsf{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$$

is the canonical projection.

1 Work locally over \mathbb{Q}_p

Theorem (Bisatt-Furio-L., 2025+)

Let p>7 and suppose that $\operatorname{Im} \rho_{E,p}\subset C_{ns}^+(p)$. Then there exists $n\geq 1$ such that

$$\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right),$$

where

$$\pi_n: \mathsf{GL}_2(\mathbb{Z}_p) \to \mathsf{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$$

is the canonical projection.

- **1** Work locally over \mathbb{Q}_p
- Write down an alternative 'p²-division polynomial'

Theorem (Bisatt-Furio-L., 2025+)

Let p > 7 and suppose that $\text{Im } \rho_{E,p} \subset C_{ns}^+(p)$. Then there exists $n \ge 1$ such that

$$\operatorname{Im} \rho_{E,p^{\infty}} = \pi_n^{-1} \left(C_{ns}^+(p^n) \right),$$

where

$$\pi_n: \mathsf{GL}_2(\mathbb{Z}_p) \to \mathsf{GL}_2(\mathbb{Z}/p^n\mathbb{Z})$$

is the canonical projection.

- **1** Work locally over \mathbb{Q}_p
- ② Write down an alternative ' p^2 -division polynomial'
- **2** Explicitly compute the Galois group and check that it is incompatible with $G_{ns}^{\#}(p^2)$.

Reductions

Proposition

Let E/\mathbb{Q} be a non-CM elliptic curve and suppose $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. If p > 7, then E/\mathbb{Q}_p has potentially good supersingular reduction.

Reductions

Proposition

Let E/\mathbb{Q} be a non-CM elliptic curve and suppose $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. If p>7, then E/\mathbb{Q}_p has potentially good supersingular reduction.

Proposition

The theorem holds if E/\mathbb{Q}_p acquires good reduction over an at most quadratic extension.

Reductions

Proposition

Let E/\mathbb{Q} be a non-CM elliptic curve and suppose $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. If p > 7, then E/\mathbb{Q}_p has potentially good supersingular reduction.

Proposition

The theorem holds if E/\mathbb{Q}_p acquires good reduction over an at most quadratic extension.

Focus on elliptic curves with semistability defect $e \in \{3, 4, 6\}$.

Reductions

Proposition

Let E/\mathbb{Q} be a non-CM elliptic curve and suppose $\operatorname{Im} \rho_{E,p} \subseteq C_{ns}^+(p)$. If p > 7, then E/\mathbb{Q}_p has potentially good supersingular reduction.

Proposition

The theorem holds if E/\mathbb{Q}_p acquires good reduction over an at most quadratic extension.

Focus on elliptic curves with semistability defect $e \in \{3, 4, 6\}$. Supersingularity $\Rightarrow e \mid p + 1$.

Theorem (Volkov)

Let $e \in \{3,4,6\}$, $e \mid p+1$, E/\mathbb{Q}_p with potentially good supersingular reduction and semistability defect e.

Theorem (Volkov)

Let $e \in \{3,4,6\}$, $e \mid p+1$, E/\mathbb{Q}_p with potentially good supersingular reduction and semistability defect e.

the points of $T_p(E)$ are in Galois-equivariant bijection with the solutions $(a^{(n)})_{n\in\mathbb{Z}}$ in \mathbb{C}_p of

$$\begin{cases} (a^{(n+1)})^p = a^{(n)}, \quad v_p(a^{(n)}) > 0 \end{cases}$$

Theorem (Volkov)

Let $e \in \{3,4,6\}$, $e \mid p+1$, E/\mathbb{Q}_p with potentially good supersingular reduction and semistability defect e. There exists $\alpha \in \mathbb{P}^1(\mathbb{Q}_p)$ such that the points of $T_p(E)$ are in Galois-equivariant bijection with the solutions $(a^{(n)})_{n \in \mathbb{Z}}$ in \mathbb{C}_p of

$$\begin{cases} (a^{(n+1)})^p = a^{(n)}, \quad v_p(a^{(n)}) > 0 \\ \sum_{n \in \mathbb{Z}} c_n(\alpha) p^n a^{(n)} = 0. \end{cases}$$

Theorem (Volkov)

Let $e \in \{3,4,6\}$, $e \mid p+1$, E/\mathbb{Q}_p with potentially good supersingular reduction and semistability defect e. There exists $\alpha \in \mathbb{P}^1(\mathbb{Q}_p)$ such that the points of $T_p(E)$ are in Galois-equivariant bijection with the solutions $(a^{(n)})_{n \in \mathbb{Z}}$ in \mathbb{C}_p of

$$\begin{cases} (a^{(n+1)})^p = a^{(n)}, \quad v_p(a^{(n)}) > 0 \\ \sum_{n \in \mathbb{Z}} c_n(\alpha) p^n a^{(n)} = 0. \end{cases}$$

Up to quadratic twist, $v(\alpha) \geq 0$.

Theorem

Let $\pi_e^e = -p$,

$$g(x) = \frac{x^{p^4}}{p^2} - \frac{\alpha \pi_e^2 x^{p^3} + x^{p^2}}{p} + \alpha \pi_e^2 x^p + x$$

and

$$\mathcal{R} = \{x \in \overline{\mathbb{Q}_p} : g(x) = 0\}.$$

Theorem

Let $\pi_e^e = -p$,

$$g(x) = \frac{x^{p^4}}{p^2} - \frac{\alpha \pi_e^2 x^{p^3} + x^{p^2}}{p} + \alpha \pi_e^2 x^p + x$$

and

$$\mathcal{R} = \{x \in \overline{\mathbb{Q}_p} : g(x) = 0\}.$$

There is a Galois-equivariant bijection

$$\Phi: E[p^2] \to \mathcal{R}.$$

afor a subgroup of $Gal(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ of index 2e

Let $\pi_e^e = -p$ and

$$g(x) = \frac{x^{p^4}}{p^2} - \frac{\alpha \pi_e^2 x^{p^3} + x^{p^2}}{p} + \alpha \pi_e^2 x^p + x.$$

Theorem

• If $v(\alpha) = 0$, the Galois group of $\mathbb{Q}_p(E[p^2])/\mathbb{Q}_p(E[p])$ has cardinality p^4 .

Let $\pi_e^e = -p$ and

$$g(x) = \frac{x^{p^4}}{p^2} - \frac{\alpha \pi_e^2 x^{p^3} + x^{p^2}}{p} + \alpha \pi_e^2 x^p + x.$$

Theorem

- If $v(\alpha) = 0$, the Galois group of $\mathbb{Q}_p(E[p^2])/\mathbb{Q}_p(E[p])$ has cardinality p^4 .
- If $v(\alpha) \ge 1$, the Galois group of $\mathbb{Q}_p(E[p^2])/\mathbb{Q}_p$ is contained in $C_{ps}^+(p^2)$.

Let $\pi_e^e = -p$ and

$$g(x) = \frac{x^{p^4}}{p^2} - \frac{\alpha \pi_e^2 x^{p^3} + x^{p^2}}{p} + \alpha \pi_e^2 x^p + x.$$

Theorem

- If $v(\alpha) = 0$, the Galois group of $\mathbb{Q}_p(E[p^2])/\mathbb{Q}_p(E[p])$ has cardinality p^4 .
- If $v(\alpha) \ge 1$, the Galois group of $\mathbb{Q}_p(E[p^2])/\mathbb{Q}_p$ is contained in $C_{ns}^+(p^2)$.

In both cases, $\operatorname{Im} \rho_{E,p^2}$ is not contained in $G_{ns}^{\#}(p^2)$.

Rational points on $X_{ns}^{+}(49)$

Theorem (Furio-L.)

The set $X_{ns}^+(49)(\mathbb{Q})$ consists of CM points.

Equivalently, there is no non-CM elliptic curve E/\mathbb{Q} such that $\operatorname{Im} \rho_{E,49}$ is contained in $C_{ns}^+(49)$.

Proposition

Let E/\mathbb{Q} be an elliptic curve such that $\operatorname{Im} \rho_{E,49} \subseteq C_{ns}^+(49)$. Write $j(E) = \frac{a}{b}$ with (a,b)=1.

Proposition

Let E/\mathbb{Q} be an elliptic curve such that $\operatorname{Im} \rho_{E,49} \subseteq C_{ns}^+(49)$. Write $j(E) = \frac{a}{b}$ with (a,b)=1.

1 There exists $t \in \mathbb{P}^1(\mathbb{Q})$ such that

$$j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Proposition

Let E/\mathbb{Q} be an elliptic curve such that $\operatorname{Im} \rho_{E,49} \subseteq C_{ns}^+(49)$. Write $j(E) = \frac{a}{b}$ with (a,b)=1.

• There exists $t \in \mathbb{P}^1(\mathbb{Q})$ such that

$$j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

The denominator b is a perfect 49-th power.

Proposition

Let E/\mathbb{Q} be an elliptic curve such that $\operatorname{Im} \rho_{E,49} \subseteq C_{ns}^+(49)$. Write $j(E) = \frac{a}{b}$ with (a,b)=1.

1 There exists $t \in \mathbb{P}^1(\mathbb{Q})$ such that

$$j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

2 The denominator b is a perfect 49-th power.

Proof.

① $X_{ns}^+(7)\cong \mathbb{P}^1$ with coordinate t. The function in the statement is the j-map $j:X_{ns}^+(7)\to X(1)\cong \mathbb{P}^1$.

Arithmetic properties of j-invariants

Proposition

Let E/\mathbb{Q} be an elliptic curve such that $\operatorname{Im} \rho_{E,49} \subseteq C_{ns}^+(49)$. Write $j(E) = \frac{a}{b}$ with (a,b)=1. The denominator b is a perfect 49-th power.

Proof.

Let p be a prime factor of b.

• $p \neq 7$ because E has potentially good reduction at 7

Arithmetic properties of j-invariants

Proposition

Let E/\mathbb{Q} be an elliptic curve such that $\operatorname{Im} \rho_{E,49} \subseteq C_{ns}^+(49)$. Write $j(E) = \frac{a}{b}$ with (a,b)=1. The denominator b is a perfect 49-th power.

Proof.

Let p be a prime factor of b.

- $p \neq 7$ because E has potentially good reduction at 7
- For $p \neq 7$, using the theory of the Tate curve, one can show that $\operatorname{Im} \rho_{E,49}$ contains $\begin{pmatrix} 1 & v_p(j) \\ 0 & 1 \end{pmatrix}$. This is incompatible with the non-split Cartan structure unless $v_p(j) \equiv 0 \pmod{49}$, that is, $v_p(b) \equiv 0 \pmod{49}$.

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Write t = x/y and homogenise to obtain

$$x^3 - 7x^2y + 7xy^2 + 7y^3 = k \cdot z^7$$

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Write t = x/y and homogenise to obtain

$$x^3 - 7x^2y + 7xy^2 + 7y^3 = k \cdot z^7$$
 for some $k \in \{1, 8\}$

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Write t = x/y and homogenise to obtain

$$x^3 - 7x^2y + 7xy^2 + 7y^3 = k \cdot z^7$$
 for some $k \in \{1, 8\}$

Elementary arithmetic considerations, using crucially that $v_7(j(E)) = 0$, lead to

$$a^2 + 28b^3 = 27c^7$$

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Write t = x/y and homogenise to obtain

$$x^3 - 7x^2y + 7xy^2 + 7y^3 = k \cdot z^7$$
 for some $k \in \{1, 8\}$

Elementary arithmetic considerations, using crucially that $v_7(j(E)) = 0$, lead to

$$a^2 + 28b^3 = 27c^7$$

+arithmetic conditions: $(2 \cdot 3 \cdot 7 \cdot a \cdot b, c) = 1$.

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Write t = x/y and homogenise to obtain

$$x^3 - 7x^2y + 7xy^2 + 7y^3 = k \cdot z^7$$
 for some $k \in \{1, 8\}$

Elementary arithmetic considerations, using crucially that $v_7(j(E)) = 0$, lead to

$$a^2 + 28b^3 = 27c^7$$

+arithmetic conditions: $(2 \cdot 3 \cdot 7 \cdot a \cdot b, c) = 1$.

Remark

$$(a,b,c)=(\pm 1,-1,-1),(\pm 27,-3,-1),(\pm 2521,-61,-1)$$
 are solutions.

$$\frac{u}{v^{49}} = j(E) = \frac{64t^3(t^2+7)^3(t^2-7t+14)^3(5t^2-14t-7)^3}{(t^3-7t^2+7t+7)^7}$$

Write t = x/y and homogenise to obtain

$$x^3 - 7x^2y + 7xy^2 + 7y^3 = k \cdot z^7$$
 for some $k \in \{1, 8\}$

Elementary arithmetic considerations, using crucially that $v_7(j(E)) = 0$, lead to

$$a^2 + 28b^3 = 27c^7$$

+arithmetic conditions: $(2 \cdot 3 \cdot 7 \cdot a \cdot b, c) = 1$.

Remark

 $(a,b,c)=(\pm 1,-1,-1),(\pm 27,-3,-1),(\pm 2521,-61,-1)$ are solutions. So are

$$(\pm 2 \cdot 181 \cdot 313 \cdot 317, 3593, 90), (\pm 2^{13} \cdot 5 \cdot 59957, -2^8 \cdot 1867, 2^4 \cdot 17)$$

To a solution of

$$a^2 + 28b^3 = 27c^7$$

we attach

$$\tilde{E}_{(a,b,c)}: y^2 = x^3 + 3 \cdot 7 \cdot b \cdot x - 7 \cdot a$$

with
$$j(\tilde{E}_{(a,b,c)}) = 2^8 \cdot 7 \cdot \frac{b^3}{c^7}$$
.

To a solution of

$$a^2 + 28b^3 = 27c^7$$

we attach

$$\tilde{E}_{(a,b,c)}: y^2 = x^3 + 3 \cdot 7 \cdot b \cdot x - 7 \cdot a$$

with $j(\tilde{E}_{(a,b,c)}) = 2^8 \cdot 7 \cdot \frac{b^3}{c^7}$. From $j(\tilde{E}_{(a,b,c)})$ we can reconstruct (a,b,c).

To a solution of

$$a^2 + 28b^3 = 27c^7$$

we attach

$$\tilde{E}_{(a,b,c)}$$
: $y^2 = x^3 + 3 \cdot 7 \cdot b \cdot x - 7 \cdot a$

with $j(\tilde{E}_{(a,b,c)})=2^8\cdot 7\cdot \frac{b^3}{c^7}$. From $j(\tilde{E}_{(a,b,c)})$ we can reconstruct (a,b,c).

② (Technical step: twist $\tilde{E}_{(a,b,c)}$ by -3 to achieve good reduction at 3. Denote by $E_{(a,b,c)}$ the quadratic twist)

To a solution of

$$a^2 + 28b^3 = 27c^7$$

we attach

$$\tilde{E}_{(a,b,c)}: y^2 = x^3 + 3 \cdot 7 \cdot b \cdot x - 7 \cdot a$$

with $j(\tilde{E}_{(a,b,c)}) = 2^8 \cdot 7 \cdot \frac{b^3}{c^7}$. From $j(\tilde{E}_{(a,b,c)})$ we can reconstruct (a,b,c).

- ② (Technical step: twist $\tilde{E}_{(a,b,c)}$ by -3 to achieve good reduction at 3. Denote by $E_{(a,b,c)}$ the quadratic twist)
- **②** The 'usual' combination of level-lowering and modularity shows that there exists a newform $f \in S_2(\Gamma_0(N))$ with

$$N \in \{2^2 \cdot 7^2, 2^3 \cdot 7^2, 2^4 \cdot 7^2\}$$

such that $ho_{f,\mathfrak{p}}\cong
ho_{\mathsf{E}_{(a,b,c)},7}$

To a solution of

$$a^2 + 28b^3 = 27c^7$$

we attach

$$\tilde{E}_{(a,b,c)}$$
: $y^2 = x^3 + 3 \cdot 7 \cdot b \cdot x - 7 \cdot a$

with $j(\tilde{E}_{(a,b,c)}) = 2^8 \cdot 7 \cdot \frac{b^3}{c^7}$. From $j(\tilde{E}_{(a,b,c)})$ we can reconstruct (a,b,c).

- ② (Technical step: twist $\tilde{E}_{(a,b,c)}$ by -3 to achieve good reduction at 3. Denote by $E_{(a,b,c)}$ the quadratic twist)
- ullet The 'usual' combination of level-lowering and modularity shows that there exists a newform $f\in S_2(\Gamma_0(N))$ with

$$N \in \{2^2 \cdot 7^2, 2^3 \cdot 7^2, 2^4 \cdot 7^2\}$$

such that $\rho_{f,\mathfrak{p}} \cong \rho_{E_{(a,b,c)},7}$ for some prime \mathfrak{p} of the ring $\mathbb{Z}[a_n(f)]$ with residue field \mathbb{F}_7 .

① To a solution of $a^2+28b^3=27c^7$ we attach $E_{(a,b,c)}$, hence an $f\in S_2(\Gamma_0(N))$ with $\rho_{E_{(a,b,c)},7}\sim \rho_{f,\mathfrak{p}}$.

- ① To a solution of $a^2+28b^3=27c^7$ we attach $E_{(a,b,c)}$, hence an $f\in S_2(\Gamma_0(N))$ with $\rho_{E_{(a,b,c)},7}\sim \rho_{f,\mathfrak{p}}$.
- Get lucky

- **①** To a solution of $a^2+28b^3=27c^7$ we attach $E_{(a,b,c)}$, hence an $f\in S_2(\Gamma_0(N))$ with $\rho_{E_{(a,b,c)},7}\sim \rho_{f,\mathfrak{p}}$.
- Get lucky: all the relevant f but one have rational coefficients, or are congruent modulo 7 to forms with rational coefficients!

- **①** To a solution of $a^2+28b^3=27c^7$ we attach $E_{(a,b,c)}$, hence an $f\in S_2(\Gamma_0(N))$ with $\rho_{E_{(a,b,c)},7}\sim \rho_{f,\mathfrak{p}}$.
- Get lucky: all the relevant f but one have rational coefficients, or are congruent modulo 7 to forms with rational coefficients! They correspond to elliptic curves, including the bad one.

- ① To a solution of $a^2+28b^3=27c^7$ we attach $E_{(a,b,c)}$, hence an $f\in S_2(\Gamma_0(N))$ with $\rho_{E_{(a,b,c)},7}\sim \rho_{f,\mathfrak{p}}$.
- Get lucky: all the relevant f but one have rational coefficients, or are congruent modulo 7 to forms with rational coefficients! They correspond to elliptic curves, including the bad one.
- Rule out as many f as possible (symplectic criteria, image of inertia, global computations of torsion fields...): reduce from 25 (orbits of) newforms to 2.

- **①** To a solution of $a^2+28b^3=27c^7$ we attach $E_{(a,b,c)}$, hence an $f\in S_2(\Gamma_0(N))$ with $\rho_{E_{(a,b,c)},7}\sim \rho_{f,\mathfrak{p}}$.
- Get lucky: all the relevant f but one have rational coefficients, or are congruent modulo 7 to forms with rational coefficients! They correspond to elliptic curves, including the bad one.
- Rule out as many f as possible (symplectic criteria, image of inertia, global computations of torsion fields...): reduce from 25 (orbits of) newforms to 2.
- New objective: for each remaining f, compute all E/\mathbb{Q} such that $E[7] \cong \rho_{f,7}$. Since f has rational coefficients, $\rho_{f,7} \cong \rho_{E_f,7}$ for an explicit elliptic curve E_f over \mathbb{Q} .

① To a solution of $a^2 + 28b^3 = 27c^7$ we attach $E_{(a,b,c)}$ with $E_{(a,b,c)}[7] \cong E_f[7]$, where f is one of two newforms.

- **3** To a solution of $a^2 + 28b^3 = 27c^7$ we attach $E_{(a,b,c)}$ with $E_{(a,b,c)}[7] \cong E_f[7]$, where f is one of two newforms.
- **②** For each E_f/\mathbb{Q} , the elliptic curves E/\mathbb{Q} with $E[7] \cong E_f[7]$ are parametrised by the rational points of **two** modular curves, $X_E(7)^{\pm}$.

- **3** To a solution of $a^2 + 28b^3 = 27c^7$ we attach $E_{(a,b,c)}$ with $E_{(a,b,c)}[7] \cong E_f[7]$, where f is one of two newforms.
- For each E_f/\mathbb{Q} , the elliptic curves E/\mathbb{Q} with $E[7] \cong E_f[7]$ are parametrised by the rational points of **two** modular curves, $X_E(7)^{\pm}$. Each of them is a twist of the Klein quartic $x^3y + y^3z + z^3x = 0$.

- **3** To a solution of $a^2 + 28b^3 = 27c^7$ we attach $E_{(a,b,c)}$ with $E_{(a,b,c)}[7] \cong E_f[7]$, where f is one of two newforms.
- For each E_f/\mathbb{Q} , the elliptic curves E/\mathbb{Q} with $E[7] \cong E_f[7]$ are parametrised by the rational points of **two** modular curves, $X_E(7)^{\pm}$. Each of them is a twist of the Klein quartic $x^3y + y^3z + z^3x = 0$.
- Find the rational points!

We have $4 = 2 \times 2$ curves of interest.

We have $4 = 2 \times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas).

We have $4=2\times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas). Let X_1,X_2,X_3 be the other ones.

We have $4=2\times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas). Let X_1, X_2, X_3 be the other ones.

• Two-descent: the Jacobians of X_1, X_2, X_3 have ranks 1, 2, 2 over \mathbb{Q} .

We have $4=2\times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas). Let X_1, X_2, X_3 be the other ones.

- Two-descent: the Jacobians of X_1, X_2, X_3 have ranks 1, 2, 2 over \mathbb{Q} .
- ② Mordell-Weil sieve: for suitably chosen primes p_i , the images of $X_i(\mathbb{Q}) \to X_i(\mathbb{F}_{p_i})$ have size at most 1, 2, 2.

We have $4=2\times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas). Let X_1, X_2, X_3 be the other ones.

- Two-descent: the Jacobians of X_1, X_2, X_3 have ranks 1, 2, 2 over \mathbb{Q} .
- ② Mordell-Weil sieve: for suitably chosen primes p_i , the images of $X_i(\mathbb{Q}) \to X_i(\mathbb{F}_{p_i})$ have size at most 1, 2, 2.
- **1** Chabauty-Coleman: each p-adic residue disc around the points in $X_i(\mathbb{F}_{p_i})$ contains at most 1 rational point.
- Since we know a rational point in each disc, we are done.

We have $4=2\times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas). Let X_1,X_2,X_3 be the other ones.

- Two-descent: the Jacobians of X_1, X_2, X_3 have ranks 1, 2, 2 over \mathbb{Q} .
- ② Mordell-Weil sieve: for suitably chosen primes p_i , the images of $X_i(\mathbb{Q}) \to X_i(\mathbb{F}_{p_i})$ have size at most 1, 2, 2.
- **3** Chabauty-Coleman: each p-adic residue disc around the points in $X_i(\mathbb{F}_{p_i})$ contains at most 1 rational point.
- Since we know a rational point in each disc, we are done.

From each rational point we reconstruct a *j*-invariant and a solution of the equation $a^2 + 28b^3 = -27c^7$. We get five solutions, three of which satisfy the arithmetic constraints.

We have $4=2\times 2$ curves of interest. Of these, one does not have rational points because of a local obstruction at 2 (Kraus, Freitas). Let X_1,X_2,X_3 be the other ones.

- Two-descent: the Jacobians of X_1, X_2, X_3 have ranks 1, 2, 2 over \mathbb{Q} .
- ② Mordell-Weil sieve: for suitably chosen primes p_i , the images of $X_i(\mathbb{Q}) \to X_i(\mathbb{F}_{p_i})$ have size at most 1, 2, 2.
- **3** Chabauty-Coleman: each p-adic residue disc around the points in $X_i(\mathbb{F}_{p_i})$ contains at most 1 rational point.
- Since we know a rational point in each disc, we are done.

From each rational point we reconstruct a *j*-invariant and a solution of the equation $a^2 + 28b^3 = -27c^7$. We get five solutions, three of which satisfy the arithmetic constraints. Working backwards, we compute a finite list containing the *j*-invariants of the rational points on $X_{ns}^+(49)$.

A very similar strategy applies. One key difference:

A very similar strategy applies. One key difference: Using crucially that $v_7(j(E)) = 0$, we obtain $a^2 + 28b^3 = 27c^7$

A very similar strategy applies. One key difference: Using crucially that $v_7(j(E)) = 0$, we obtain

$$a^2 + 28b^3 = 27c^7$$
 or $a^2 + 196b^3 = 27c^7$.

A very similar strategy applies. One key difference: Using crucially that $v_7(j(E)) = 0$, we obtain

$$a^2 + 28b^3 = 27c^7$$
 or $a^2 + 196b^3 = 27c^7$.

Unfortunately,
$$13^2 + 196 \cdot (-1)^3 = 27 \cdot (-1)^7$$
.

A very similar strategy applies. One key difference:

Using crucially that $v_7(j(E)) = 0$, we obtain

$$a^2 + 28b^3 = 27c^7$$
 or $a^2 + 196b^3 = 27c^7$.

Unfortunately, $13^2 + 196 \cdot (-1)^3 = 27 \cdot (-1)^7$. Everything else essentially goes through, but we now have one more modular form f_3 , hence two more curves $X_{E_5}(7)^{\pm}$. One of them does not have points locally at 2.

A very similar strategy applies. One key difference:

Using crucially that $v_7(j(E)) = 0$, we obtain

$$a^2 + 28b^3 = 27c^7$$
 or $a^2 + 196b^3 = 27c^7$.

Unfortunately, $13^2 + 196 \cdot (-1)^3 = 27 \cdot (-1)^7$. Everything else essentially goes through, but we now have one more modular form f_3 , hence two more curves $X_{E_{f_3}}(7)^{\pm}$. One of them does not have points locally at 2.

Conjecture

The set of rational points of the curve

$$C: x^4 + 3x^3y - 3x^2yz - 3x^2z^2 + 6xy^3 - 6xy^2z + 3xyz^2 - 2xz^3 + 4y^4 + 2y^3z - 5yz^3 = 0.$$

is
$$C(\mathbb{Q}) = \{[0:0:1], [1:1:1], [2:0:1], [-1:0:1]\}.$$

Thank you for your attention!