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Galois representations of elliptic curves

Let E/Q be an elliptic curve. For every prime p and n > 1 we have the
mod-p"” Galois representation

pEpr : Gal(Q/Q) — Aut E[p"] = GLo(Z/p"Z).



Galois representations of elliptic curves

Let E/Q be an elliptic curve. For every prime p and n > 1 we have the
mod-p"” Galois representation

pEpr : Gal(Q/Q) — Aut E[p"] = GLo(Z/p"Z).
These can be combined into a p-adic representation

pEp= : Gal(Q/Q) — Aut THE = GLy(Z)).
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Fix a prime p. Classify the possible images of pg pe.
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Mazur’s program B for p-adic representations

Fix a prime p. Classify the possible images of pg pe.

Reformulation

Let n > 1 and H < GL2(Z/p"Z) be a subgroup with det H = (Z/p"Z)*.
Determine all (non-CM, non-cuspidal) rational points on Xy (Q).
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a non-split Cartan C,\.(p).
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Mod-p representations

Lemma (Serre)

Let p > 5. If pg p is surjective, then so is pg poo.

Theorem (Serre, Mazur, Bilu-Parent—Rebolledo)

For p > 37, pg p is either surjective or has image contained in the

. . _ a be 2 2
normaliser of a non-split Cartan: {(:l:b ia) } a —eb” # 0}, where

e e Fy\Fx2.

Theorem (Le Fourn-Lemos 2021, Furio-L. 2023)

For p > 5 and Im pg , C C,(p), then Im pg , is equal to the normaliser of
a non-split Cartan C,\.(p).

v

Primes up to 37: Zywina (2015) gives an almost complete classification
apart from the non-split Cartan cases.



The normaliser of a non-split Cartan mod p”

Set
n a b n
erg(p ):{<:|:b :|:(2> ‘32—5b2€(Z/p Z)X}

and let X;L(p™) be the corresponding modular curve.



The normaliser of a non-split Cartan mod p”

Set
n a b n
Ct(p") = {(ib i‘i) | a2 —cb? € (Z/p Z)X}

and let X1 (p") be the corresponding modular curve.
ns g

The computation of XL(p")(Q) seems to be very hard.



Progress on Mazur's program B: small p

Recent (and less recent) exciting progress!

@ p = 2: Rouse—Zureick-Brown (2015)

@ Sutherland-Zywina (2017): modular curves of prime power levels with
infinitely many rational points

e p=13,17: Kenku (1980),
Balakrishnan—Dogra—Miiller—Tuitman—Vonk (2019 and 2021)

e p€{3,5,7,11}: almost complete classification by
Rouse-Sutherland—Zureick-Brown (2022)

e p = 3: Balakrishnan—Betts—Hast—Jha—Miiller (2025)



State of the art

Table 2. Arithmetically maximal groups of €-power level with € < 17 for which Xg (Q) is
unknown; each has rank = genus, rational CM points, no rational cusps and no known exceptional

points.

Label Level Group Genus
fo nn o 23 BBHIM (2025) .. 3 5
27 250 Lz T J 1vnS\J; T
25.250.14.1 52 Nas (5%) 14
49.1029.69.1 72 Nas (7%) 69

2 16 6 20 17

49.147.9.1 7 ([ &1 188D 9
49.196.9.1 72 (GEAREE:) 9
121.6655.511.1 112 Nys (112) 511

From the paper by Rouse—Sutherland—Zureick-Brown
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Table 2. Arithmetically maximal groups of €-power level with € < 17 for which Xg (Q) is
unknown; each has rank = genus, rational CM points, no rational cusps and no known exceptional

points.

Label Level Group Genus
G oan o o 23 BBHIM (2025) .. 4 10
27 250 Lz T J tvnS\J; T
25.250.14.1 52 Nas (5%) 14
49.1029.69.1 72 Nas (7%) 69

2 16 6 20 17

49.147.9.1 7 ([ &1 188D 9
49.196.9.1 72 (GEAREE:) 9
121.6655.511.1 112 Nis(11%) 511

From the paper by Rouse—Sutherland—Zureick-Brown

(415 pages of tables of curves on which they are successful!)



Main question

What can we say about the p-adic image of Galois (especially assuming
that pg p has image C(p))?



7-adic representations

Theorem (Furio-L.)
@ The set X;.(49)(Q) consists of CM points.
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7-adic representations

Theorem (Furio-L.)
@ The set X;.(49)(Q) consists of CM points.

Q Let
C: x* +3x3y — 3x%yz — 3x22% + 6xy° — 6xy%z

+ 3xyz% — 2xz° + 4y* +2y3z — 5y = 0.

If #C(Q) = 4, then both X[:(49)(Q) and XZ,(49)(Q) consist of CM
points.

Corollary

Unconditionally, the image of pg 70 is the inverse image in GLy(Z7) of

PE.40(Gal(Q/Q)).




p-adic representations for p > 7

Theorem (Bisatt-Furio-L., 2025+)

Let p > 7 and suppose that Im pg , € Co(p). Then there exists n > 1
such that Im pg p Is the inverse image in GLo(Zp) of C(p").




p-adic representations for p > 7

Theorem (Bisatt-Furio-L., 2025+)

Let p > 7 and suppose that Im pg , € Co(p). Then there exists n > 1
such that Im pg p Is the inverse image in GLo(Zp) of C(p").

Corollary

The index of the adelic representation attached to E is < h(E)*°() as
h(E) — .




Classification of p-adic representations: group theory J
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Let 7y : GLo(Z,) — GLo(Z/p*Z) be the canonical projections.

Theorem (Zywina, Furio)
Let p > 7 and assume Im pg , = C;.(p). One of the following holds:
© There exists n > 1 such that Im pg e = m, 1 (C(P"));




Group theory +¢

Let 7y : GLo(Z,) — GLo(Z/p*Z) be the canonical projections.

Theorem (Zywina, Furio)
Let p > 7 and assume Im pg , = C;.(p). One of the following holds:
© There exists n > 1 such that Im pg e = m, 1 (C(P"));

Q Impg pe = my ! (G,ﬁ(pz)>, where




Group theory +¢

Let 7y : GLo(Z,) — GLo(Z/p*Z) be the canonical projections.

Theorem (Zywina, Furio)
Let p > 7 and assume Im pg , = C;.(p). One of the following holds:
© There exists n > 1 such that Im pg e = m, 1 (C(P"));

Q Impg pe = my ! (G,ﬁ(pz)>, where

a be
GH(P?) = CL(P) # V. V=ld+p (_b )
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Sketch of proof.

Let G := Im pg p. The sequence

1 — ker(G(p®) = G(p)) = G(p*) = G(p) — 1

shows that G(p) = C,2(p) acts by conjugation on ker(G(p?) — G(p)),
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Group theory +¢

Sketch of proof.

Let G := Im pg p. The sequence
1 — ker(G(p®) = G(p)) = G(p*) = G(p) — 1

shows that G(p) = C,2(p) acts by conjugation on ker(G(p?) — G(p)), so
this kernel is a C;(p)-stable subspace of

My(Fp) = Vi@ Vo & Vi,

0 0 10
Vi =Fp-Id, szFp‘<1g>’ V3:FP'<(1S>’(01>>‘

Now Vi @ V; gives C.L(p?), while Vi © V3 gives G,ﬁ(pz). To conclude the
classification, one also needs information about the existence of sufficiently
many homotheties in pg poo. O
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p-adic classification

Theorem (Bisatt-Furio-L., 2025+)

Let p > 7 and suppose that Im pg , C Co(p). Then there exists n > 1
such that

Im pepee =, (CE(P™))
where
Th - GLQ(ZP) — GLQ(Z/[)”Z)

is the canonical projection.

© Work locally over Q,
@ Write down an alternative ‘p?-division polynomial’

© Explicitly compute the Galois group and check that it is incompatible
with Gﬁ(p2).



Reductions

Proposition

Let E/Q be a non-CM elliptic curve and suppose Im pg , € CL.(p). If
p > 17, then E/Q, has potentially good supersingular reduction.
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Reductions

Proposition

Let E/Q be a non-CM elliptic curve and suppose Im pg , € CL.(p). If
p > 17, then E/Q, has potentially good supersingular reduction.

Proposition

The theorem holds if E/Q, acquires good reduction over an at most
quadratic extension.

Focus on elliptic curves with semistability defect e € {3,4,6}.
Supersingularity = e | p+ 1.
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Theorem (Volkov)
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A sprinkle of p-adic Hodge theory

Theorem (Volkov)

Let e € {3,4,6}, e| p+ 1, E/Qp with potentially good supersingular
reduction and semistability defect e. There exists o € P1(Qp) such that

the points of T,(E) are in Galois-equivariant bijection with the solutions
(a{M) ez in Cp of

(a(n+1))p = a(n)’ Vp(a(n)) >0
ZneZ Cn(a)pna(n) =0.

Up to quadratic twist, v(«) > 0.




p>-torsion points

Theorem
Let 7TS = —p,
4 3 5
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p>-torsion points

Theorem
Let 15 = —p,
4 3 2
xP" am2xP + xP 5
g(x)=—& — ———— tamx" +x
p? p ¢
and

R ={x€Qp:g(x)=0}

There is a Galois-equivariant® bijection

¢ : E[p’] —» R.

for a subgroup of Gal(Q,/Q,) of index 2e




p>-torsion points

Let 7§ = —p and

Theorem

o If v(a) =0, the Galois group of Q,(E[p?])/Qp(E[p]) has cardinality

p*.




p>-torsion points

Let 7§ = —p and

xP' amdxP’ 4 xP 5
g(x)—?— < p + amoxP + x
Theorem
o If v(a) =0, the Galois group of Q,(E[p?])/Qp(E[p]) has cardinality
4
p*.

o Ifv(a) > 1, the Galois group of Q,(E[p?])/Qp is contained in
G (p?).




p>-torsion points

Let 75 = —p and

xP" am?xP” 4 xP 5
g(x)—?— € p + amixP + x
Theorem
o If v(a) =0, the Galois group of Q,(E[p?])/Qp(E[p]) has cardinality
4

p*.
o Ifv(a) > 1, the Galois group of Q,(E[p?])/Qp is contained in

G (p?).

In both cases, Im pg 2 is not contained in G,ﬁ(p2).




7-adic representations




Rational points on X (49)

Theorem (Furio-L.)

The set X;5(49)(Q) consists of CM points.

Equivalently, there is no non-CM elliptic curve E /Q such that Im pg a9 is
contained in C,(49).




Arithmetic restrictions for C,;(49)
Proposition

Let E/Q be an elliptic curve such that Im pg 49 C C5(49). Write j(E) = £
with (a, b) = 1.
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@ The denominator b is a perfect 49-th power.




Arithmetic restrictions for C(49)

Proposition
Let E/Q be an elliptic curve such that Im pg 49 € C,;(49). Write j(E) =
with (a, b) = 1.

Q There exists t € P}(Q) such that

643 (2 4+ 7)3 (12 — Tt + 14)3(5¢2 — 14t — 7)3
N (B3 -T2+ 7t+7)

J(E)

@ The denominator b is a perfect 49-th power.

Proof.

O X;L(7) = P! with coordinate t. The function in the statement is the
j-map j : X;5(7) — X(1) = PL.

O

v




Arithmetic properties of j-invariants

Proposition

Let E/Q be an elliptic curve such that Im pg 49 € C(49). Write j(E) =
with (a, b) = 1. The denominator b is a perfect 49-th power.

v

Proof.
Let p be a prime factor of b.
@ p # 7 because E has potentially good reduction at 7




Arithmetic properties of j-invariants

Proposition

Let E/Q be an elliptic curve such that Im pg 49 € C(49). Write j(E) =
with (a, b) = 1. The denominator b is a perfect 49-th power.

Proof.
Let p be a prime factor of b.
@ p # 7 because E has potentially good reduction at 7
@ For p # 7, using the theory of the Tate curve, one can show that

<(1) vpl(J)

Cartan structure unless v,(j) =0 (mod 49), that is, v,(b) =0
(mod 49).

Im pE 49 contains . This is incompatible with the non-split

O
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A generalised Fermat equation

U E) = 64t3(t2 +7)3(t% — 7t + 14)3(5¢% — 14t — 7)3
v )= (B -T2 +7t+7)

Write t = x/y and homogenise to obtain

x3 —7x%y + Txy?> + 7y> = k - 2’ for some k € {1,8}

Elementary arithmetic considerations, using crucially that v7(j(E)) =0,
lead to
a® +28b% = 27¢’
+arithmetic conditions: (2-3-7-a-b, ¢) =1.
Remark

(a, b, c) = (£1,-1,-1),(x27,—3,—1),(£2521, —61, —1) are solutions.
So are

(+2-181-313 - 317, 3593, 90), (£2'% - 5. 59957, —28 . 1867,2* - 17)




Strategy (after Poonen-Schaefer-Stoll)

@ To a solution of
2%+ 28b% = 27¢7

we attach
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with j(E(a,b,c)) —98.7. b
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Strategy (after Poonen-Schaefer-Stoll)

@ To a solution of
2% +28b% = 27¢7
we attach )

E(a,b,c):y2:x3+3.7.b,x_7_a

with j(E(a,b,C)) =28.7. ’C’—:. From j(E(a,p,c)) We can reconstruct
(a, b, c).

@ (Technical step: twist E(a,b,c) by —3 to achieve good reduction at 3.
Denote by £, 1 ) the quadratic twist)

© The ‘usual’ combination of level-lowering and modularity shows that
there exists a newform f € Sy(Io(N)) with

Ne{22.72,23.72 24 .72}

such that pr, = pg,, 7 for some prime p of the ring Z[an(f)] with
residue field [F7.
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Strategy (after Poonen-Schaefer-Stoll)

Q To a solution of a® + 28b3 = 27¢” we attach E(a,p,c), hence an
f € Sp(Fo(N)) with pg,,, 7 ~ prp-

O Get lucky: all the relevant f but one have rational coefficients, or are
congruent modulo 7 to forms with rational coefficients! They
correspond to elliptic curves, including the bad one.

O Rule out as many f as possible (symplectic criteria, image of inertia,
global computations of torsion fields...): reduce from 25 (orbits of)
newforms to 2.

@ New objective: for each remaining f, compute all E/Q such that
E[7] = pr 7. Since f has rational coefficients, pf 7 = pg, 7 for an
explicit elliptic curve Ef over Q.
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Finding the rational points

We have 4 = 2 x 2 curves of interest. Of these, one does not have rational
points because of a local obstruction at 2 (Kraus, Freitas). Let Xi, Xo, X3
be the other ones.

© Two-descent: the Jacobians of Xi, X5, X3 have ranks 1,2,2 over Q.

@ Mordell-Weil sieve: for suitably chosen primes p;, the images of
Xi(Q) = Xi(Fp,) have size at most 1,2,2.

© Chabauty-Coleman: each p-adic residue disc around the points in
Xi(Fp,;) contains at most 1 rational point.

i

@ Since we know a rational point in each disc, we are done.

From each rational point we reconstruct a j-invariant and a solution of the
equation a® + 28b% = —27c”. We get five solutions, three of which satisfy
the arithmetic constraints. Working backwards, we compute a finite list
containing the j-invariants of the rational points on X;;(49).
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The other two modular curves of level 49

A very similar strategy applies. One key difference:
Ysing—erueially-that-v({E))=0; we obtain
a’ +28b> = 27¢” or a® +196b> = 27¢7.

Unfortunately, 132 + 196 - (—1)3 = 27 - (—1)". Everything else essentially
goes through, but we now have one more modular form f3, hence two more
curves Xg, (7)*. One of them does not have points locally at 2.

Conjecture

The set of rational points of the curve

C:x*+ 3x3y — 3X2yz —3x%22 + 6xy3 — 6xy2z
+ 3xyz2 —2xz% + 4y4 + 2y3z — 5yz3 =0.

is C(Q)={[0:0:1],[1:1:1],[2:0:1],[-1:0:1]}.




Thank you for your attention!
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