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Galois representations of elliptic curves

Let E/Q be an elliptic curve. For every prime p and n ≥ 1 we have the

mod-pn Galois representation

ρE ,pn : Gal(Q/Q) → AutE [pn] ∼= GL2(Z/pnZ).

These can be combined into a p-adic representation

ρE ,p∞ : Gal(Q/Q) → AutTpE ∼= GL2(Zp).



Galois representations of elliptic curves

Let E/Q be an elliptic curve. For every prime p and n ≥ 1 we have the

mod-pn Galois representation

ρE ,pn : Gal(Q/Q) → AutE [pn] ∼= GL2(Z/pnZ).

These can be combined into a p-adic representation

ρE ,p∞ : Gal(Q/Q) → AutTpE ∼= GL2(Zp).



Mazur's program B (vertical aspect)

Mazur's program B for p-adic representations

Fix a prime p. Classify the possible images of ρE ,p∞ .

Reformulation

Let n ≥ 1 and H < GL2(Z/pnZ) be a subgroup with detH = (Z/pnZ)×.
Determine all (non-CM, non-cuspidal) rational points on XH(Q).
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Mod-p representations

Lemma (Serre)

Let p ≥ 5. If ρE ,p is surjective, then so is ρE ,p∞ .

Theorem (Serre, Mazur, Bilu�Parent�Rebolledo)

For p > 37, ρE ,p is either surjective or has image contained in the

normaliser of a non-split Cartan:

{(
a bε
±b ±a

) ∣∣ a2 − εb2 ̸= 0

}
, where

ε ∈ F×
p \ F×2

p .

Theorem (Le Fourn-Lemos 2021, Furio-L. 2023)

For p > 5 and Im ρE ,p ⊆ C+
ns(p), then Im ρE ,p is equal to the normaliser of

a non-split Cartan C+
ns(p).

Primes up to 37: Zywina (2015) gives an almost complete classi�cation

apart from the non-split Cartan cases.
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The normaliser of a non-split Cartan mod pn

Set

C+
ns(p

n) =

{(
a bε
±b ±a

) ∣∣ a2 − εb2 ∈ (Z/pnZ)×
}

and let X+
ns(p

n) be the corresponding modular curve.

The computation of X+
ns(p

n)(Q) seems to be very hard.
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Progress on Mazur's program B: small p

Recent (and less recent) exciting progress!

p = 2: Rouse�Zureick-Brown (2015)

Sutherland�Zywina (2017): modular curves of prime power levels with

in�nitely many rational points

p = 13, 17: Kenku (1980),

Balakrishnan�Dogra�Müller�Tuitman�Vonk (2019 and 2021)

p ∈ {3, 5, 7, 11}: almost complete classi�cation by

Rouse�Sutherland�Zureick-Brown (2022)

p = 3: Balakrishnan�Betts�Hast�Jha�Müller (2025)



State of the art

From the paper by Rouse�Sutherland�Zureick-Brown

(+15 pages of tables of curves on which they are successful!)
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Main question

What can we say about the p-adic image of Galois (especially assuming

that ρE ,p has image C+
ns(p))?



7-adic representations

Theorem (Furio-L.)

1 The set X+
ns(49)(Q) consists of CM points.

2 Let
C : x4 + 3x3y − 3x2yz − 3x2z2 + 6xy3 − 6xy2z

+ 3xyz2 − 2xz3 + 4y4 + 2y3z − 5yz3 = 0.

If #C (Q) = 4, then both X#
ns (49)(Q) and X#

sp (49)(Q) consist of CM
points.

Corollary

Unconditionally, the image of ρE ,7∞ is the inverse image in GL2(Z7) of
ρE ,49(Gal(Q/Q)).
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p-adic representations for p > 7

Theorem (Bisatt-Furio-L., 2025+)

Let p > 7 and suppose that Im ρE ,p ⊆ C+
ns(p). Then there exists n ≥ 1

such that Im ρE ,p∞ is the inverse image in GL2(Zp) of C
+
ns(p

n).

Corollary

The index of the adelic representation attached to E is ≪ h(E )2+o(1) as

h(E ) → ∞.
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Classi�cation of p-adic representations: group theory



Group theory +ε

Let πk : GL2(Zp) → GL2(Z/pkZ) be the canonical projections.

Theorem (Zywina, Furio)

Let p ≥ 7 and assume Im ρE ,p = C+
ns(p). One of the following holds:

1 There exists n ≥ 1 such that Im ρE ,p∞ = π−1
n (C+

ns(p
n));

2 Im ρE ,p∞ = π−1

2

(
G#
ns(p2)

)
, where

G#
ns(p

2) = C+
ns(p)⋊ V , V = Id+p

(
a bε
−b c

)
.
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Group theory +ε

Sketch of proof.

Let G := Im ρE ,p∞ . The sequence

1 → ker(G (p2) → G (p)) → G (p2) → G (p) → 1

shows that G (p) = C+
ns(p) acts by conjugation on ker(G (p2) → G (p)),

so

this kernel is a C+
ns(p)-stable subspace of

M2(Fp) ∼= V1 ⊕ V2 ⊕ V3,

V1 = Fp · Id, V2 = Fp ·
(
0 ε
1 0

)
, V3 = Fp ·

〈(
0 ε
−1 0

)
,

(
1 0

0 −1

)〉
.

Now V1 ⊕ V2 gives C+
ns(p

2), while V1 ⊕ V3 gives G#
ns(p2). To conclude the

classi�cation, one also needs information about the existence of su�ciently

many homotheties in ρE ,p∞ .
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Classi�cation of p-adic representations: local analysis



p-adic classi�cation

Theorem (Bisatt-Furio-L., 2025+)

Let p > 7 and suppose that Im ρE ,p ⊂ C+
ns(p). Then there exists n ≥ 1

such that

Im ρE ,p∞ = π−1

n

(
C+
ns(p

n)
)
,

where

πn : GL2(Zp) → GL2(Z/pnZ)

is the canonical projection.

1 Work locally over Qp

2 Write down an alternative `p2-division polynomial'

3 Explicitly compute the Galois group and check that it is incompatible

with G#
ns(p2).
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Reductions

Proposition

Let E/Q be a non-CM elliptic curve and suppose Im ρE ,p ⊆ C+
ns(p). If

p > 7, then E/Qp has potentially good supersingular reduction.

Proposition

The theorem holds if E/Qp acquires good reduction over an at most

quadratic extension.

Focus on elliptic curves with semistability defect e ∈ {3, 4, 6}.
Supersingularity ⇒ e | p + 1.
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A sprinkle of p-adic Hodge theory

Theorem (Volkov)

Let e ∈ {3, 4, 6}, e | p + 1, E/Qp with potentially good supersingular

reduction and semistability defect e.

the points of Tp(E ) are in Galois-equivariant bijection with the solutions

(a(n))n∈Z in Cp of {
(a(n+1))p = a(n), vp(a

(n)) > 0∑
n∈Z cn(α)p

na(n) = 0.

Up to quadratic twist, v(α) ≥ 0.
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p2-torsion points

Theorem

Let πe
e = −p,

g(x) =
xp

4

p2
− απ2ex

p3 + xp
2

p
+ απ2ex

p + x

and

R = {x ∈ Qp : g(x) = 0}.

There is a Galois-equivarianta bijection

Φ : E [p2] → R.

afor a subgroup of Gal(Qp/Qp) of index 2e
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2])/Qp(E [p]) has cardinality

p4.

If v(α) ≥ 1, the Galois group of Qp(E [p
2])/Qp is contained in

C+
ns(p

2).

In both cases, Im ρE ,p2 is not contained in G#
ns(p2).
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7-adic representations



Rational points on X+
ns(49)

Theorem (Furio-L.)

The set X+
ns(49)(Q) consists of CM points.

Equivalently, there is no non-CM elliptic curve E/Q such that Im ρE ,49 is

contained in C+
ns(49).



Arithmetic restrictions for C+
ns(49)

Proposition

Let E/Q be an elliptic curve such that Im ρE ,49 ⊆ C+
ns(49). Write j(E ) = a

b
with (a, b) = 1.

1 There exists t ∈ P1(Q) such that

j(E ) =
64t3(t2 + 7)3(t2 − 7t + 14)3(5t2 − 14t − 7)3

(t3 − 7t2 + 7t + 7)7

2 The denominator b is a perfect 49-th power.

Proof.

1 X+
ns(7)

∼= P1 with coordinate t. The function in the statement is the

j-map j : X+
ns(7) → X (1) ∼= P1.
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Arithmetic properties of j-invariants

Proposition

Let E/Q be an elliptic curve such that Im ρE ,49 ⊆ C+
ns(49). Write j(E ) = a

b
with (a, b) = 1. The denominator b is a perfect 49-th power.

Proof.

Let p be a prime factor of b.

p ̸= 7 because E has potentially good reduction at 7

For p ̸= 7, using the theory of the Tate curve, one can show that

Im ρE ,49 contains

(
1 vp(j)
0 1

)
. This is incompatible with the non-split

Cartan structure unless vp(j) ≡ 0 (mod 49), that is, vp(b) ≡ 0

(mod 49).
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A generalised Fermat equation

u

v49
= j(E ) =

64t3(t2 + 7)3(t2 − 7t + 14)3(5t2 − 14t − 7)3

(t3 − 7t2 + 7t + 7)7

Write t = x/y and homogenise to obtain

x3 − 7x2y + 7xy2 + 7y3 = k · z7 for some k ∈ {1, 8}

Elementary arithmetic considerations, using crucially that v7(j(E )) = 0,

lead to

a2 + 28b3 = 27c7

+arithmetic conditions: (2 · 3 · 7 · a · b, c) = 1.

Remark

(a, b, c) = (±1,−1,−1), (±27,−3,−1), (±2521,−61,−1) are solutions.
So are

(±2 · 181 · 313 · 317, 3593, 90), (±213 · 5 · 59957,−28 · 1867, 24 · 17)
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Strategy (after Poonen-Schaefer-Stoll)

1 To a solution of

a2 + 28b3 = 27c7

we attach

Ẽ(a,b,c) : y
2 = x3 + 3 · 7 · b · x − 7 · a

with j(Ẽ(a,b,c)) = 28 · 7 · b3

c7
.

From j(Ẽ(a,b,c)) we can reconstruct

(a, b, c).

2 (Technical step: twist Ẽ(a,b,c) by −3 to achieve good reduction at 3.

Denote by E(a,b,c) the quadratic twist)

3 The `usual' combination of level-lowering and modularity shows that

there exists a newform f ∈ S2(Γ0(N)) with

N ∈ {22 · 72, 23 · 72, 24 · 72}

such that ρf ,p ∼= ρE(a,b,c),7 for some prime p of the ring Z[an(f )] with
residue �eld F7.
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Strategy (after Poonen-Schaefer-Stoll)

4 To a solution of a2 + 28b3 = 27c7 we attach E(a,b,c), hence an

f ∈ S2(Γ0(N)) with ρE(a,b,c),7 ∼ ρf ,p.

5 Get lucky: all the relevant f but one have rational coe�cients, or are

congruent modulo 7 to forms with rational coe�cients! They

correspond to elliptic curves, including the bad one.

6 Rule out as many f as possible (symplectic criteria, image of inertia,

global computations of torsion �elds...): reduce from 25 (orbits of)

newforms to 2.

7 New objective: for each remaining f , compute all E/Q such that

E [7] ∼= ρf ,7. Since f has rational coe�cients, ρf ,7 ∼= ρEf ,7 for an

explicit elliptic curve Ef over Q.
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Strategy (after Poonen-Schaefer-Stoll)

8 To a solution of a2 + 28b3 = 27c7 we attach E(a,b,c) with

E(a,b,c)[7] ∼= Ef [7], where f is one of two newforms.

9 For each Ef /Q, the elliptic curves E/Q with E [7] ∼= Ef [7] are
parametrised by the rational points of two modular curves, XE (7)

±.
Each of them is a twist of the Klein quartic x3y + y3z + z3x = 0.

10 Find the rational points!
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Finding the rational points

We have 4 = 2× 2 curves of interest.

Of these, one does not have rational

points because of a local obstruction at 2 (Kraus, Freitas). Let X1,X2,X3

be the other ones.

1 Two-descent: the Jacobians of X1,X2,X3 have ranks 1, 2, 2 over Q.

2 Mordell-Weil sieve: for suitably chosen primes pi , the images of

Xi (Q) → Xi (Fpi ) have size at most 1, 2, 2.

3 Chabauty-Coleman: each p-adic residue disc around the points in

Xi (Fpi ) contains at most 1 rational point.

4 Since we know a rational point in each disc, we are done.

From each rational point we reconstruct a j-invariant and a solution of the

equation a2 + 28b3 = −27c7. We get �ve solutions, three of which satisfy

the arithmetic constraints. Working backwards, we compute a �nite list

containing the j-invariants of the rational points on X+
ns(49).
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equation a2 + 28b3 = −27c7. We get �ve solutions, three of which satisfy

the arithmetic constraints. Working backwards, we compute a �nite list

containing the j-invariants of the rational points on X+
ns(49).



The other two modular curves of level 49

A very similar strategy applies. One key di�erence:

we obtain

a2 + 28b3 = 27c7

Unfortunately, 132 + 196 · (−1)3 = 27 · (−1)7. Everything else essentially

goes through, but we now have one more modular form f3, hence two more

curves XEf3
(7)±. One of them does not have points locally at 2.

Conjecture

The set of rational points of the curve

C : x4 + 3x3y − 3x2yz − 3x2z2 + 6xy3 − 6xy2z

+ 3xyz2 − 2xz3 + 4y4 + 2y3z − 5yz3 = 0.

is C (Q) = {[0 : 0 : 1], [1 : 1 : 1], [2 : 0 : 1], [−1 : 0 : 1]}.
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Thank you for your attention!


	Classification of p-adic representations: group theory
	Classification of p-adic representations: local analysis
	7-adic representations

